484 research outputs found

    A Reexamination of the Eastern Collared Lizard (Crotaphytus collaris collaris) in Arkansas

    Get PDF
    Loss of suitable habitat is a threat to species worldwide. Habitat destruction, including loss, change, and fragmentation of habitat, is the leading cause of species extinction. Eastern collared lizards (Crotaphytus collaris collaris) are habitat specialists on glades. Both C. c. collaris and glade habitats are rare and of special concern in the state of Arkansas. Many glade populations have already been extirpated in the Ozarks of Arkansas and Missouri. Increasing knowledge of the distribution, habitat structure, and population dynamics of C. c. collaris is important to ensure the survival of this species in Arkansas. A literature review of the C. c. collaris is presented in Chapter 1. Lizard characteristics, glade habitat characteristics, and information on habitat change, loss, and fragmentation of glades are described. The main goal of my thesis, presented in Chapter 2, was to determine differences across sites in environmental variables, habitat variables, tree community structure, and lizard body condition. I sought to establish differences in these factors in 17 historical C. c. collaris sites (7 with lizard presence and 8 with lizard absence) and determine if the differences were correlated with the presence or absence of C. c. collarispopulations. Significant differences in some factors were found between present sites and absent sites. Environmental variables were not related to the presence or absence of C. c. collaris, indicating a habitat phenomenon rather than environmental. Lizard presence was correlated with habitat structure, as indicated in the ground and canopy cover surveys. Present sites had a positive correlation with rock and soil cover and a negative correlation with CWD, vegetation, and canopy cover; whereas absent sites had a positive correlation with CWD, vegetation, and canopy cover and a negative correlation with rock and soil cover. Present and absent sites had a significant difference in tree community structure. Absent sites had significantly larger trees and a higher frequency of trees compared to present sites. Lizard body condition was associated with the quality and openness of the glade. These data will prove useful in conservation efforts aimed at C. c. collaris recovery in Arkansas and other glade locations in the Ozarks

    Global Music Perspectives: Music Outside the Western Canon in Local Schools

    Full text link
    As a class, we are designing a research project for investigating how music teachers from counties in South-Central Pennsylvania use music from outside the Western canon (i.e. world music ). We are performing a qualitative study by interviewing k-12 music teachers from school districts in South-Central Pennsylvania. Teachers may choose to participate in a focus group interview with other teachers or in one-on-one interviews. The focus group interview will not exceed two hours and the one-on-one interviews will not exceed an hour. The interviews will be guided using a questionnaire (see attached), but the conversation may deviate from these questions at the discretion of the interviewer(s). We will transcribe these interviews to extract common thematic materials and relevant information. We will also compile a literature review of relevant peer-reviewed articles and use the data from said articles to expand upon our gathered information

    Innovation in wastewater near-source tracking for rapid identification of COVID-19 in schools [Comment]

    Get PDF
    COVID-19 is one of the biggest global public health challenges of the century with almost 42 million cases and more than a million deaths to date. Until a COVID-19 vaccine or effective pharmaceutical intervention is developed, alternative tools for the rapid identification, containment, and mitigation of the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance for managing community transmission. Within this context, school closure has been one of the strategies implemented to reduce spread at local and national levels. [...

    An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies

    Get PDF
    Background: Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture. Results: The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene. Conclusion: High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture

    Is Mitigation Translocation an Effective Strategy for Conserving Common Chuckwallas?

    Get PDF
    Mitigation translocation remains a popular conservation tool despite ongoing debate regarding its utility for population conservation. To add to the understanding of the effectiveness of mitigation translocation, in 2017 and 2018 we monitored a population of protected common chuckwallas (Sauromalus ater) following translocation away from the area of construction of a new highway near the South Mountains, Phoenix, Arizona, USA. We removed chuckwallas from the construction right-of-way, paint-marked and pit-tagged them, and then released them in a nearby municipal preserve. We deployed very high frequency radio-telemetry transmitters on a sub-sample of 15 translocated adult chuckwallas. We monitored the radio-marked chuckwallas once a day at 1- to 3-day intervals for up to 46 days to document survival, body mass, and post-release movements. The average distance moved following translocation was 359 ± 53 m. Using minimum convex polygons, the average home range size of translocated lizards was 0.9 ± 0.3 ha, which was 18–45 times larger than expected for the species. Following translocations, we surveyed the translocation sites 1 month later and again 1 year later to determine the presence of translocated chuckwallas. Translocated individuals were rarely observed a second time: in 2017, only 11 of 160 translocated chuckwallas were seen again, and in 2018, only 11 of 192 translocated chuckwallas were detected. In the light of low recapture rate, consistent loss of body mass, and large movements of marked lizards, we conclude that survival of translocated chuckwallas was low over a single year. In the future, efficacy of mitigation translocation could be better evaluated by assessing the spatial ecology of both resident and translocated individuals simultaneously using radio-telemetry

    Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Get PDF
    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way

    Mold and Endotoxin Levels in the Aftermath of Hurricane Katrina: A Pilot Project of Homes in New Orleans Undergoing Renovation

    Get PDF
    BACKGROUND: After Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth. OBJECTIVES: A small demonstration project was conducted November 2005–January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup. METHODS: Three houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, real-time particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF). RESULTS: At baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m(3), spore counts ranged from 82,000 to 630,000 spores/m(3), and endotoxin ranged from 17 to 139 endotoxin units/m(3). Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N-95 respirators. CONCLUSIONS: During baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters

    Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond

    Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach

    Get PDF
    Clinical testing of children in schools is challenging, with economic implications limiting its frequent use as a monitoring tool of the risks assumed by children and staff during the COVID-19 pandemic. Here, a wastewater-based epidemiology approach has been used to monitor 16 schools (10 primary, 5 secondary and 1 post-16 and further education) in England. A total of 296 samples over 9 weeks have been analysed for N1 and E genes using qPCR methods. Of the samples returned, 47.3% were positive for one or both genes with a detection frequency in line with the respective local community. WBE offers a low cost, non-invasive approach for supplementing clinical testing and can provide longitudinal insights that are impractical with traditional clinical testing

    Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples
    corecore